Как оценить состояние пострадавшего: признаки, по которым можно определить состояние пострадавшего, и порядок оценки. Анатомо-физиологические основы жизненно важных функций организма

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РЕФЕРАТ НА ТЕМУ:

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ЖИЗНЕННО ВАЖНЫХ ФУНКЦИЙ ОРГАНИЗМА.

Введение

ДЫХАТЕЛЬНАЯ СИСТЕМА

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА 4

ПОЧЕЧНАЯ СИСТЕМА

ЖЕЛУДОЧНО-КИШЕЧНЫЙ ТРАКТ (ЖКТ)

ВОДНО-ЭЛЕКТРОЛИТНЫЙ ОБМЕН

КИСЛОТНО-ЩЕЛОЧНОЕ СОСТОЯНИЕ (КЩС)

ЛИТЕРАТУРА

Введение

Диапазон заболеваний, при которых могут возникнуть неот-ложные состояния, весьма велик, однако при всем многообразии этиологических факторов их патогенез неизменно включает такие патофизиологические сдвиги, как гипоксия, расстройства гемоди-намики и особенно микроциркуляции, печеночная и почечная не-достаточности, нарушение водно-солевого обмена и кислотно-ще-лочного состояния (КЩС), гемостаза и др. Исходя из этого бес-спорного положения, для правильного понятия патогенеза неотлож-ных состояний необходимо знать анатомо-физиологические основы жизненно важных функций организма.

ДЫХАТЕЛЬНАЯ СИСТЕМА

Основной функцией легких является обмен О 2 и СО 2 между внешней средой и организмом. Это достигается сочетанием венти-ляции, диффузии газов через альвеолярно-капиллярную мембрану и легочного кровообращения.

Процесс дыхания условно можно подразделить на три этапа.

Первый этап включает в себя доставку кислорода из внешней среды в альвеолы.

Вторым этапом дыхания является диффузия О 2 через альвеоляр-но-капиллярную мембрану ацинуса и транспортировка его к тка-ням; движение СО 2 осуществляется в обратном порядке.

Третий этап дыхания заключается в утилизации кислорода при биологическом окислении субстратов и образовании, в конечном итоге, энергии в клетках.

Примечание. Регуляция дыхания осуществляется центральной и пе-риферической нервной системой. В кровеносных сосудах находятся хеморецепторы, реагирующие на концентрацию продуктов обмена, парциаль-ное напряжение кислорода и углекислого газа и реакцию внутренней сре-ды организма (рН). Через них осуществляется регуляция объема вентиля-ции, частоты, глубины, длительности вдоха и выдоха, силы сокращений дыхательных мышц.

Первый этап. Адекватность первого этапа зависит от многих факторов, начиная с функции верхних дыхательных путей: очище-ние, согревание, увлажение воздуха. Эффективность очищения вды-хаемого воздуха зависит от количества и качественного состояния макрофагов, содержащихся в слизистых оболочках; они фагоцити-руют и переваривают минеральные и бактериальные частицы. Внут-ренняя поверхность верхних дыхательных путей выстлана реснитча-тым псевдомногослойным эпителием. Его основная функция -- эва-куация мокроты из верхних дыхательных путей; в норме из трахеи и бронхов за сутки удаляется до 100 мл мокроты, при некоторых видах патологии до 100 мл/час.

Для нормальной функции верхних дыхательных путей важное значение имеет состояние кашлевого рефлекса. При его нарушении не происходит своевременного освобождения верхних дыхательных путей от слизи и патологического секрета.

Кашель состоит из трех фаз:

сокращение диафрагмы резко повышает давление, воздух вы-ходит, открываются альвеолярные ходы, и «запертый» в альве-олах воздух устремляется в бронхи, унося слизь и патологиче-ский секрет.

Различают верхние (полость носа, рта, глотки и гортани) и ниж-ние (трахея, бронхи) дыхательные пути. Емкость верхних дыхатель-ных путей называется анатомическим мертвым пространством, оно приблизительно равно 150 см 3 или 2,2 см 3 на 1 кг массы. Воздух, заполняющий анатомическое мертвое пространство, в газообмене не участвует. Вентиляция легких зависит от дыхательного обмена и частоты дыханий в 1 мин. Основные параметры вентиляции легких представлены в табл. 1.

Таблица 1. Нормальные величины функциональных проб легких.

Величина вдоха определяется разницей между силой сокраще-ния дыхательных мышц и эластичностью легких. Эластичность лег-ких зависит от поверхностного натяжения жидкости, покрывающей альвеолы и эластичности самой легочной ткани. Вентилируемость легких во время вдоха (по значимости): нижний отдел, передний, задний, верхушка. Работа дыхания увеличивается при заболеваниях легких, сопровождающихся повышением эластичного и неэластич-ного сопротивлений. Этот факт необходимо учитывать при прове-дении искусственной вентиляции легких (ИВЛ).

Примечание. Современная диагностическая аппаратура позволяют в течение 10--15 мин. определить все данные спирограммы, оценить проходимость бронхов на всех уровнях, скорость потока воздуха и вязкость мокроты. Кроме этого, прибор дает заключение о наличии в легких рестрикции или обструкции.

Вторым этапом дыхания является диффузия кислорода через АЦИНУС и транспортировка его к тканям; движение углекислого газа осуществляется в обратном порядке. Ацинус является структурной единицей легких. Он состоит из дыхательной бронхиолы и альвеол. Диффузия кислорода осуществляется за счет парциальной разности его содержания в альвеолярном воздухе и венозной крови, после чего незначительная часть О 2 растворяется в плазме, а большая часть свя-зывается с гемоглобином, содержащимся в эритроцитах, и в таком виде транспортируется к органам и тканям. Соседние альвеолы сообщаются между собой порами межальвеолярных перегородок. Через них возможна незначительная вентиляция альвеол с закупоренными слизью хода-ми, например, при астматическом статусе.

Примечание. Фукция альвеолярно-капиллярной мембраны не огра-ничивается только диффузией газов. Она влияет на химический состав крови, участвует в процессах регуляции свертывающей системы крови и др.

Внутренняя поверхность альвеол покрыта сложным белковым по-верхностно-активным веществом -- СУРФАКТАНТОМ. Сурфактантный комплекс препятствует спадению терминальных бронхиол, играет важ-ную роль в регуляции водного баланса, осуществляет противоотечную функцию, оказывает защитное действие за счет противоокислительной активности. Предполагается участие сурфактанта в процессах диффузий О 2 и СО 2 через альвеолярно-капиллярный барьер за счет регулирующего влияния на динамику перикапиллярной, интерстициальной и альвео-лярной жидкости. Сурфактант очень чувстви-телен к различным эндо- и экзогенным факторам: снижение кровообра-щения, вентиляции, уменьшение парциального напряжения кислорода в артериальной крови (р а О 2) вызывают уменьшение его количества, в результате чего нарушается стабильность поверхности альвеол, что мо-жет осложниться возникновением ателектазов.

Третий этап дыхания заключается в утилизации кислорода в цик-ле Кребса. Молеку-лярной основой клеточного дыхания является окисление углерода до углекислого газа и перенос атома водорода на атом кислорода с после-дующим образованием молекулы воды. Данный путь получения энер-гии (аэробный) в организме является ведущим и наиболее эффектив-ным. Так, если из 1 молекулы глюкозы при анаэробном окислении образуется только 2 молекулы АТФ, то при аэробном окислении из нее образуется 38 молекул АТФ. В нормальных условиях 96--98% всей энер-гии, вырабатываемой в организме, образуется в условиях аэробного окисления и только 2--4% приходится на анаэробное. Отсюда ясна исключительная роль адекватного снабжения организма кислородом.

Сосудистое русло легких состоит из 2-х систем: легочной и брон-хиальной. Давление в легочной артерии в среднем равно 17--23 мм рт. ст. Общая поверхность стенок капилляров составляет 30--60 м 2 , а при физической нагрузке увеличивается до 90 м 2 . Диастолическое давление в левом желудочке равно 0,2 мм рт. ст. Нормальный кро-воток в системе легочной артерии зависит от величины венозного возврата крови в сердце, сократительной способности миокарда, функционирования клапанов, тонуса артериол и прекапиллярных сфинктеров. В зависимости от конкретных условий, емкость малого круга может значительно меняться, т. к. он относится к системе сосудов с низким давлением.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Взаимосвязь между внешней средой и различными анатомо-физиологическими структурами организма обеспечивает сердечно-сосудистая система (ССС). Рассмотрим основные составляющие ССС: Кровь; Сердце; Сосуды.

Кровь

Основные показатели крови: плотность 1,055--1,065, вязкость в 5--6 раз больше, чем у воды, объем приблизительно равен 8% массы тела (5--6 л). Гематокрит: мужчины -- 0,45--0,48, женщины -- 0,42--0,45. Эритроциты: основная функция-- транспорт кислорода к тканям. Лейкоциты: основная функция -- фагоцитоз, иммунные процессы, пирогенные реакции.

Плазма крови представляет собой коллоидно-электролитно-белковый раствор, в котором взвешены форменные элементы. Она имеет большое значение в осуществленнии гемо- и гидродинамики.

Плазма составляет большую часть ОЦК. Содержащийся в ней белок обеспечивает значительную часть коллоидно-осмотического давления крови. Белки плазмы, особенно альбумины, связывают лекарственные вещества, токсины и транспортируют их к местам разрушения.

Для крови характерно увеличение вязкости в зависимости от градиента скорости. В свою очередь, от вязкости зависит еще одно свойство крови -- текучесть, величина, обратная вязкости. Вязкость возрастает при сахарном диабете (на 20%), при коматозных состоя-ниях, коронарной недостаточности, дегидратации, шоке и т. д.

При этом основной причиной снижения текучести является увеличение гематокрита и возрастание концентрации глобулинов и фибриноге-на. Уменьшение вязкости наблюдается при гипертермии, лечении антикоагулянтами, декстранами. Кроме этого, текучесть крови за-висит от физико-химических свойств форменных элементов (их кон-центрации, взаимодействия между собой и сосудистой стенкой).

Кислородно-транспортная функция крови

Кровь осуществляет свою кислородно-транспортную функцию благодаря наличию в ней гемоглобина, разности парциального дав-ления газов на этапе их транспортировки и ряда некоторых других факторов.

Таблица. Парциальное давление дыхательных газов на различных участках их транспортировки у здоровых людей в покое

В условиях покоя организм потребляет 250 мл О 2 в 1 мин., а при значительной физической нагрузке эта величина может возрасти до 2500 мл/мин.

Механизм доставки О 2 к тканям.

Кислород в крови находится в двух видах -- физически раство-ренный в плазме и химически связанный с гемоглобином (НЬ).

Физически раство-ренный в плазме О 2 составляет всего 3% от минимальной потребности организма эта вели-чина настолько мала, что ею в дальнейшем можно пренебречь.

Единст-венным реальным переносчиком кислорода в организме может быть только гемоглобин.

При присоединении кислорода к гемоглобину последний превращает-ся в оксигемоглобин. Объем переносимого кислорода зависит, в свою очередь, от суммарного количества циркулирующего гемо-глобина и его кислородной емкости, что, в конечном итоге, оп-ределяет кислородную емкость крови -- это то количество кисло-рода, которое одномоментно находится в связанном виде с НЬ в артериальной крови.

Кислородная емкость 1 г гемоглобина составляет 1,34 мл, следовательно, должная величина кислородной емкости крови будет равна НЬ * 1,34, или при НЬ, равном 150 г/л, 150 г умножаем на 1,34 мл и получа-ется, что

При условии 100% на-сыщения крови кислородом в одном литре крови будет находиться 201 мл связанного кислорода, это и есть величина кислород-ной емкости крови.

Организм в нормальных условиях утилизирует только 25% имеюще-гося в артериальной крови кислорода. Оставшиеся невостребован-ными 75% служат для обеспечения так называемого «запаса прочно-сти» организма по кислороду.

Уровень насыщения гемоглобина кислородом (sO 2) зависит не только от суммарного количества гемоглобина, но и от пар-циального давления ки-слорода в крови (рО 2), рН внутренней среды и температуры тела.

На тканевом уровне чем дальше от легких, тем рН тканей ста-новится меньше (один из компонентов закисления -- накопле-ние избытка углекислого газа), а это уменьшает сродство гемо-глобина к кислороду; благодаря этому артериальная кровь лег-ко отдает его тканям на уровне системы микроциркуляции. Обратным током кровь, ставшая к этому моменту уже веноз-ной, попадает в сеть легочных капилляров, где рН значительно выше, чем в венозной сети. В результате этого сродство гемо-глобина к кислороду восстанавливается и процесс переноса ки-слорода возобновляется.

Температуры тела . Чем она выше, тем меньше будет сродство гемоглобина к кислороду и наоборот. Знание этого фактора дает объяснение одной из причин возникно-вения признаков острой дыхательной недостаточности у больных с высокой температурой. Кроме вышеуказанных факторов, на транс-портную функцию кислорода существенную роль оказывает и внут-риклеточный органический фосфат. Он непосредственно образуется в эритроцитах, находится в молекуле гемоглобина и влияет на ее сродство к кислороду. Повы-шение уровня уменьшает сродство гемоглобина к кислороду, а понижение концентрации приводит к увеличению его сродства к О 2.

При наличии легочных заболеваний, сопровож-дающихся развитием хронической гипоксии, содержание 2, 3-ДФГ повышается и, соответственно, уменьшается сродство НЬ к О 2 , что вызывает улучшение снабжения тканей кислородом. При кетоацидотической коме наблюдается обратный процесс. Осложняющий ее течение декомпенсированный метаболический ацидоз нарушает об-разование 2, 3-ДФГ в эритроцитах, вследствие чего сродство гемо-глобина к кислороду возрастает и нарушаются условия его отдачи на тканевом уровне. В консервированной крови, особенно с дли-тельным сроком хранения, уровень 2, 3-ДФГ снижается, поэтому при ее переливании нарушается отдача кислорода тканям.

Заключение.

К факторам, приводящим к возрастанию сродства НЬ к О 2

увеличение рН;

уменьшение рСО 2 ;

уменьшение концентрации 2, 3-ДФГ и неорганического фосфата;

снижение температуры тела;

Потребление кислорода, кроме функционального состояния гемоглобина, в определенной мере отражает компенсаторную роль гемодинамики. Увеличение минутного объема кровообращения (МОК) может компенсировать недостаток кислорода в крови.

Транспорт углекислого газа (СО 2 ). Конечным продуктом аэроб-ного гликолиза является углекислый газ. Он образуется в клетках и реагирует с водой, в результате чего получается угольная кислота, которая, в свою очередь, диссоциирует на ионы водорода и НСО 3 ~. Эта реакция происходит во всех водных секторах и эритроцитах. Далее углекислота диффундирует через клеточные мембраны и попадает в венозную кровь. В состоя-нии покоя за 1 мин. в тканях образуется и выделяется легкими при-мерно 180 мл СО 2. Часть углекислого газа физиче-ски растворена в плазме крови. не более 6--7% от его суммарного количества. Примерно 3--10% углекислого газа из тканей к легким транспортируется в виде карбаминовой формы.

Основное количество углекислого газа (более 80%) транспор-тируется из тканей к легким в форме бикарбоната, важнейшая роль в этом механизме принадлежит гемоглобину и его способности к процессам оксигенации и деоксигенации. Оксигенированный гемо-глобин (НЪО 2) является более сильной кислотой, чем деоксигенированный, благодаря этому обеспечивается связывание СО 2 в ткане-вых капиллярах и освобождение его в легочных.

Показатели газов крови

Для знания точного содержания газов нужно одновременно исследовать артериальную, венозную и капиллярную кровь. Однако если у больного нет существенных нарушений газообмена, о состоя-нии газов вполне адекватно можно судить по динамике их содержа-ния в «артериализированной» капиллярной крови. Для ее получе-ния необходимо предварительно согреть или хорошо в течение 5 мин. отмассировать мочку уха или палец кисти.

Исследование рО 2 и рСО 2 проводят при помощи анализаторов микрометодом Аструпа. Каждый такой прибор оборудован микро-ЭВМ, и все расчеты содержания кислорода в крови осуществляются в автоматическом режиме.

SaO 2 -- насыщение кислородом артериальной крови

р а О 2 -- парциальное напряжение кислорода в артериальной крови

Примечание.

Приведенные данные касаются лиц молодого и среднего возраста. С возрастом происходит снижение рСО 2 и SaO 2

Сердце

Основные электрофизиологические характеристики сердца: воз-будимость, сократимость, проводимость, автоматизм. Функция серд-ца, как насоса, зависит от состояния эндокарда, миокарда, перикар-да, состояния клапанного механизма, ЧСС и ритма.

Основной путь выработки энергии для сердца -- аэробный. Одно из важнейших свойств сердца -- возбудимость, которая обусловлена периодическим изменением трансмембранного потенциала. Сумма этих изменений в виде биотоков регистрируется на ЭКГ.

Ведущий показатель адекватной работы сердца -- ударный объем (УО; синоним -- систолический объем, норма: 60--80 мл) и производ-ная от него величина: минутный объем сердца (МОС); равен УО * ЧСС, норма 5-6 л).

Сосуды

Привязка кровотока к органам и тканям осуществляется при помощи пяти видов кровеносных сосудов:

Сосуды-буферы, или артерии.

Сосуды-емкости, или вены.

Сосуды распределения (сопротивления) -- это артериолы и венулы.

Сосуды обмена -- капилляры.

Сосуды-шунты.

Структурной единицей системы микроциркуляции является КАПИЛЛЯРОН, состоящий из артериолы, венулы, капилляров и артерио-венозного анастомоза.

Тонус артериол в головном мозге и сердце регулируется через хеморецепторы, реагирующие на рН, р а СО 2 , а в других органах и системах еще и симпатической нервной системой.

Движущая сила обмена веществ на уровне капилляров -- гид-родинамическое (ГД) и коллоидно-осмотическое давление (КОД).

Лимфатическая система обеспечивает постоянство плазмы кро-ви и межклеточной жидкости. Объем лимфы приблизительно 2 л, скорость лимфотока 0,5--1,0 мл/сек.

ПЕЧЕНЬ

Печень занимает одно из центральных мест в метаболизме ор-ганизма: регулирует энергетический баланс (вырабатывает 1/7 ко-личества энергии), водно-солевое и кислотно-щелочное состояние, свертывание крови, теплообмен и детоксикацию, образование бел-ка, конъюгацию билирубина и образование желчи. Структурной еди-ницей печени является ГЕПАТОЦИТ. Он представляет из себя об-разование, состоящее из бассейна терминальной артериолы и во-ротной венулы, терминальных желчных протоков и ветвей лимфа-тических капилляров. Гепатоциты периферических отделов печеноч-ных долек накапливают различные вещества, в т. ч. и высокоэргиче-ские соединения, участвуют в детоксикации; гепатоциты централь-ных отделов печеночных долек осуществляют метаболизм билиру-бина и экскрецию в желчные капилляры ряда веществ эндо- и экзо-генного происхождения.

ПОЧЕЧНАЯ СИСТЕМА

В системе поддержания постоянства объема и состава жидко-стей организма основным эффекторным органом является почка. Структурная единица почек -- НЕФРОН. Образуя первичную мочу из плазмы крови, почки избирательно возвращают в кровоток необ-ходимые компоненты и выводят с вторичной мочой избыток воды, солей, Н+ и органические метаболиты, накопление которых вызы-вает интоксикацию. Количество и состав мочи, в отличие от других жидкостей организма, может колебаться в значительных пределах. Процесс образования мочи представляет собой несколько взаимо-связанных между собой процессов: ультрафильтрацию, реабсорбцию, секрецию и экскрецию. Продуктом ультрафильтрации является пер-вичная моча, состав которой отличается от состава плазмы крови, в основном, содержанием белка: в ультрафильтрате его в 1000 раз мень-ше, чем в плазме. На этапе реабсорбции приблизительно 99% пер-вичной мочи всасывается. Окончательный состав мочи формирует-ся благодаря секреции Н + и К + . Фильтрационная функция почек прекращается при давлении в a. renalis, равном 80 и менее мм рт. ст. Среднесуточный объем мочи -- 1,5 л, плотность -- 1,014-1,021.

Кроме почек, определенную роль в выделительной функции организма играют легкие, кишечник и кожа. Через легкие за сутки с дыханием выделяется 0,4--0,6 л воды. Приблизительно столько же выделяется и через кожные покровы. При повышении температуры тела на 1?С происходит увеличение потери воды за сутки через легкие в объеме 0,5 л и на столько же возрастает потеря через кожу. С калом за сутки выделяется 150--200 мл воды.

ЖЕЛУДОЧНО-КИШЕЧНЫЙ ТРАКТ (ЖКТ)

В течение суток организм выделяет в просвет кишечника при-мерно 8--10 л пищеварительных соков (слюна -- 1,5 л, желудочный сок -- 2,5 л, желчь -- 0,5 л, секрет поджелудочной железы -- 0,7 л, тонкокишечный сок -- 3,0 л) и все обратно всасывает. При патоло-гии ЖКТ (рвота, понос) теряется большое количество пищевари-тельных соков и различных микроэлементов. Регуляция всего соко-обращения осуществляется через периферические рецепторные зве-нья, гипоталамус, нейрогипофиз, надпочечники и выделительные органы. К центральным механизмам сокорегуляции относится жаж-да, осморегуляция, обмен натрия. Жажда возникает в результате обез-воживания клеток и повышения осмотического давления плазмы.

ВОДНО-ЭЛЕКТРОЛИТНЫЙ ОБМЕН

Объем, концентрация электролитов и рН жидкостей являются основными характеристиками внутренней среды, определяющими ус-ловия нормальной деятельности функциональных систем. Организм на 60--65% (40--45 л) состоит из воды. Ее суммарное количество зави-сит от пола, возраста, массы. Вода в организме находится в связанном состоянии. Она участвует в процессах гидратации и образует ряд ком-плексных систем, которые входят в состав клеток и жидкостей. Выде-ляют 3 сектора воды:

внутрисосудистый -- 5%,

интерстициальный -- 15%,

внутриклеточный -- 40%.

Первые два сектора (внутрисосудистый и интерстициальный) образуют внеклеточное пространство.

Организм с большой точностью регулирует постоянство осмо-тической концентрации, уровня электролитов и взаимосвязи вод-ных секторов.

Химические вещества. Одни химические вещества -- электро-литы -- диссоциируют на ионы, другие -- неэлектролиты -- ионов не образуют (мочевина, креатинин). Ионы несут на себе положи-тельный или отрицательный заряд, в целом же вся внутренняя среда организма электронейтральна. Катионы и анионы обеспечивают один из компонентов осмотического давления тела -- биоэлектрический потенциал мембран, катализируют обмен веществ, являются кофак-торами ферментов, определяют рН, участвуют в энергетическом об-мене и процессах гемокоагуляции. Одним из наиболее стабильных параметров внутренней среды является осмотическое давление Оно зависит от концентрации осмотически активных частиц в растворе и определяется их количеством, независимо от массы, заряда и раз-мера. Во внутриклеточном секторе осмотическое давление опреде-ляется концентрацией калия, фосфата и белка, во внеклеточном -- содержанием Na + , СI? и белка. Осмотическое давление тем больше, чем больше этих частиц. Клеточные мембраны полупроницаемы, они свободно пропускают воду, но не пропускают другие молекулы, поэтому вода всегда идет туда, где концентрация молекул больше. В норме обмен ионами, водой и субстратами окисления подчинен про-цессу получения энергии и выведению метаболитов.

КИСЛОТНО-ЩЕЛОЧНОЕ СОСТОЯНИЕ (КЩС)

Нормальная функция клетки зависит от постоянства объема, состава и рН жидкости. Регуляторные механизмы, контролирующие нормальный объем, осмотическую концентрацию, ионный состав и Н + , взаимосвязаны. Поддержание постоянства КЩС внутренней среды осуществляется через систему буферов, легкие, почки и дру-гие органы. Принцип саморегуляции организмом КЩС заключает-ся в том, что при избыточном закислении внутренней среды проис-ходит усиленное выведение ионов водорода, а при ощелачивании -- их задержка.

ЛИТЕРАТУРА

1. Интенсивная терапия неотложных состояний. Патофизиология, клиника, лечение. Бутылин Ю.П., Бутылин В.Ю., Бутылин Д.Ю. 2003

2. Сумин С.А. Неотложные состояния. - 2-е изд., стереотип. - М.: Фармацевтический мир, 2000.

3. Анестезиология и реанимация. под редакцией О. А. Долиной. М.: Медицина, 2002 г.

Подобные документы

    Кровь как система. Транспортная функция крови. Иммунная и самосохраняющая функция крови. Компенсаторные реакции при кровопотери. Система кровообращения. Геморрагический шок и принципы интенсивной терапии. Физиологические механизмы геморрагического шока.

    реферат , добавлен 28.06.2009

    Описание недостаточности кровообращения как патологического состояния, при котором сердечно-сосудистая система не способна доставить органам нужное количество крови. Снижение диастолической и систолической функций сердца при сердечной недостаточности.

    презентация , добавлен 06.02.2014

    Сердце как фиброзно-мышечный орган, обеспечивающий ток крови по кровеносным сосудам. Строение сердца, средние размеры, болезни. Производительность сердца в минуту. Обеспечение непрерывного движения крови по кровеносным сосудам как основная функция сердца.

    презентация , добавлен 24.09.2012

    Строение и расположение сердца человека. Особенности венозной и артериальной крови. Система автоматизма сердца. Типы кровеносных сосудов. Значение кислорода для человеческого организма. Причины возникновения заболеваний сердечно-сосудистой системы.

    презентация , добавлен 12.11.2015

    Функции крови: основные физико-химические константы, форменные элементы; группы, правила переливания; свертывание крови, регуляция гемостаза. Физиология дыхания: транспорт кислорода и углекислого газа кровью, влияние содержания газов на внешнее дыхание.

    методичка , добавлен 07.02.2013

    Роль сердца: ритмическое нагнетание крови в сосуды; генератор давления; обеспечение возврата крови. Сосуды малого и большого круга кровообращения. Физиологические свойства сердечной мышцы. Потенциал действия кардиомиоцита желудочков и градиент автоматии.

    лекция , добавлен 27.05.2014

    Процесс поглощения из воздуха кислорода и выделения углекислого газа. Смена воздуха в легких, чередование вдоха и выдоха. Процесс дыхания через нос. Что опасно для органов дыхания. Развитие смертельных заболеваний легких и сердца у курильщиков.

    презентация , добавлен 15.11.2012

    Обеспечение постоянной циркуляции крови по замкнутой системе сосудов. Строение, расположение и система автоматизма сердца. Регуляция его деятельности и сокращение. Круги кровообращения человека. Кровеносные сосуды. Физиологическая регенерация крови.

    реферат , добавлен 17.05.2015

    Система регуляции агрегатного состояния крови. Свертывающая и противосвертывающая системы крови. Реакция стенки сосудов в ответ на их повреждение. Плазменные факторы свертывания крови. Роль сосудисто-тромбоцитарного гемостаза. Пути расщепления тромба.

    презентация , добавлен 15.02.2014

    Значение сердечно-сосудистой системы для жизнедеятельности организма. Строение и работа сердца, причина автоматизма. Движение крови по сосудам, ее распределение и ток. Работа воспитателя по укреплению сердечно-сосудистой системы детей раннего возраста.

  • 1. Объём крови в организме – 6,5–7,0 % веса тела.
  • 2. Объём плазмы – 55–60 % объёма крови.
  • 3. Содержание белков в плазме – около 7 % (70г/л).
  • 4. Содержание сывороточного альбумина в плазме – 4 % (40г/л).
  • 5. Содержание сывороточного глобулина в плазме – 2–3 % (20–30г/л).
  • 6. Содержание фибриногена в плазме – 0,2–0,4 % (2–4г/л).
  • 7. Содержание белков в лимфе – 0,3–4,0 % (3–40г/л).
  • 8. Содержание минеральных солей в крови – 0,9–0,95 % (285 — 310 мосм?л)
  • 9. Содержание глюкозы в крови – 80–120 мг % (4,5–6,5ммоль/л).
  • 10. Осмотическое давление плазмы – около 7,5 атм.
  • 11. Онкотическое давление плазмы – 25–30 мм.рт.ст.
  • 12. Удельный вес крови – 1,050–1,060
  • 13. Число в 1л крови у мужчин – 4,5–5,0. 1012
  • 14. Число в 1л крови у женщин – 4,0–4,5. 1012
  • 15. Средний диаметр эритроцита – 7,5мкм
  • 16. Содержание гемоглобина в 1л крови у мужчин – 135–150г/л
  • 17. Содержание гемоглобина в 1л крови у женщин – 125–140г/л
  • 18. Цветовой показатель – 0,8–1,0
  • 19. Время «жизни» эритроцита – 100–120 дней.
  • 20. Число тромбоцитов в 1л крови – 200–400. 109 .
  • 21. Скорость оседания (СОЭ) у мужчин – 2–10мм/ч
  • 22. Скорость оседания эритроцитов (СОЭ) у женщин – 2–15мм/ч
  • 23. Число лейкоцитов в 1л крови – 4–9. 109 .
  • 24. % содержание базофилов в крови – 0–1 %.
  • 25. % содержание эозинофилов в крови – 2–4 %.
  • 26. % содержание нейтрофилов в крови – 50–70 %.
  • 27. % содержание лимфоцитов в крови – 20–40 %.
  • 28. % содержание моноцитов в крови – 2–10 %.
  • 29. Среднее время свёртывания крови – 3–5мин.
  • 30. рН артериальной крови – 7,4.
  • 31. pH венозной крови – 7,35.

КРОВООБРАЩЕНИЕ

  • 1. Число сердечных сокращений (в покое) – 60–80 в мин.
  • 2. Средняя продолжительность одного сердечного цикла – 0,8с.
  • 3. Длительность систолы предсердий – 0,1с.
  • 4. Длительность сердечной паузы – 0,37–0,4с.
  • 5. Длительность систолы желудочков – 0,33с.
  • 6. Систолический объём крови, выбрасываемый сердцем – 60–70мл.
  • 7. Минутный объём крови, выбрасываемый сердцем в покое – 4,5–5,0л. 8. Длительность фазы абсолютной рефрактерности желудочков – 0,27с. 9. Длительность фазы относительной рефрактерности желудочков – 0,03с.
  • 10. Длительность интервала PQ на кривой ЭКГ – 0,12–0,18с.
  • 11. Длительность интервала QRS на кривой ЭКГ – 0,06–0,09с.
  • 12. Амплитуда зубца R на кривой ЭКГ – 0,8–1,5мВ.
  • 13. Амплитуда зубца Р на кривой ЭКГ – 0,1–0,2В.
  • 14. Амплитуда зубца Т на кривой ЭКГ – 0,3–0,6мВ.
  • 15. Систолическое артериальное давление крови (в среднем возрасте) – – 110–125 мм.рт.ст.
  • 16. Диастолическое артериальное давление крови (в среднем возрасте) – – 60–80 мм.рт.ст.
  • 17. Среднее артериальное давление крови – 90–95 мм.рт.ст.
  • 18. Пульсовое артериальное давление крови – 35–50 мм.рт.ст.
  • 19. Линейная скорость течения крови в артериях – 0,3–0,5м/с.
  • 20. Скорость распространения пульсовой волны (в аорте) – 10–12м/с.
  • 21. Скорость распространения пульсовой волны в периферических артериях – – 6,0–9,5 м/с.
  • 22. Средняя скорость кровотока в капиллярах – 0,1–1,0мм/с.
  • 23. Средняя скорость кровотока в венах среднего калибра – 60–140мм/с. 24. Средняя скорость кровотока в крупных венах – 200мм/с.
  • 25. Кровяное давление в артериальном конце капилляра – 30–40 мм.рт.ст.
  • 26. Кровяное давление в венозном конце капилляра – 15–20 мм.рт.ст.
  • 27. Минимальное время полного кругооборота крови – 20–30с.

НЕРВНО-МЫШЕЧНАЯ СИСТЕМА

  • 1. Средний уровень мембранного потенциала в нервных и мышечных клетках– 50–90мВ.
  • 2. Мембранный потенциал сердечной клетки – водителя ритма – (-60мВ).
  • 3. Мембранный потенциал клетки миокарда – (-90мВ).
  • 4. Средняя амплитуда потенциала действия в нервных и мышечных клетках – 120–130мВ.
  • 5. Длительность потенциала действия мышечных волокон сердца – 0,3с. 6. Длительность потенциала действия в клетках миокарда — 0,3с
  • 7. Максимальный ритм импульсации (лабильность) для нервных волокон – – 500с -1.
  • 8. Максимальный ритм импульсации (лабильность) для мышечных волокон – – 200с -1.
  • 9. Максимальный ритм импульсации (лабильность) для синапсов – 100с -1. 10. Средняя скорость проведения возбуждения по двигательным нервным волокнам – 70–120м/с(тип А).
  • 10. Средняя скорость проведения возбуждения по симпатическим (постганглионарным) нервным волокнам (тип С) – 0,5–3м/с.

ДЫХАНИЕ

  • 1. Жизненная ёмкость лёгких у мужчин – 4000–5000мл.
  • 2. Жизненная ёмкость лёгких у женщин – 3000–4500мл.
  • 3. Дыхательный объем воздуха – 500мл.
  • 4. Резервный объём вдоха – 3000мл.
  • 5. Резервный объём выдоха – 1300мл.
  • 6. Остаточный объём воздуха – 1200мл.
  • 7. Общая ёмкость лёгких – 6000мл.
  • 8. Число дыхания в покое – 16–20 в минуту.
  • 9. Минутный объём дыхания в спокойном состоянии – 6–9л/мин.
  • 10. Минутный объём дыхания при физической нагрузке – 50–100л/мин. 11. Внутриплевральное отрицательное давление к концу спокойного вдоха – (-6 мм.рт.ст.).
  • 12. Внутриплевральное отрицательное давление в конце спокойного выдоха – (-3 мм.рт.ст.).
  • 13. Содержание в атмосферном воздухе кислорода и углекислого газа соответственно – 20,93 % и 0,03 %.
  • 14. Содержание в выдыхаемом воздухе кислорода и углекислого газа соответственно – 16,0 % и 4,5 %.
  • 15. Содержание в альвеолярном воздухе кислорода и углекислого газа соответственно – 14,0 % и 5,5 %.
  • 16. Парциальное давление кислорода в альвеолярном воздухе – – 100 мм.рт.ст.
  • 17. Парциальное давление углекислого газа в альвеолярном воздухе – – 40 мм.рт.ст.
  • 18. Напряжение кислорода в артериальной крови – около 100 мм.рт.ст. 19. Напряжение кислорода в венозной крови – 40 мм.рт.ст.
  • 20. Напряжение углекислого газа в артериальной крови – около 40 мм.рт.ст.
  • 21. Напряжение углекислого газа в венозной крови – около 46 мм.рт.ст. 22. Коэффициент утилизации кислорода в покое – около 40 %.
  • 23. Коэффициент утилизации кислорода при физической нагрузке – 50–60 %.

ОБМЕН ВЕЩЕСТВ

  • 1. Дыхательный коэффициент при приёме смешанной пищи – 0,85–0,9. 2. Дыхательный коэффициент при окислении жиров – 0,7.
  • 3. Дыхательный коэффициент при окислении белка – 0,8.
  • 4. Дыхательный коэффициент при окислении углеводов – 1,0.
  • 5. Основной обмен взрослого человека – около 1700 ккал в сутки.
  • 6. Обмен энергии при лёгкой работе – 2000–3300 ккал в сутки.
  • 7. Обмен энергии при работе средней тяжести – 2500–3500 ккал в сутки. 8. Обмен энергии при тяжелой работе – 3500–6000 ккал в сутки.

АНАЛИЗАТОРЫ

  • 1. Количество колбочек в сетчатке – 7–8 млн.
  • 2. Количество палочек в сетчатке – 110–125 млн.
  • 3. Острота зрения, определяемая углом зрения – 1мин.
  • 4. Частота звуковых колебаний, слышимых человеком – 16–20000Гц.
  • 5. Максимальный уровень громкости – 130–140дБ.
  • 6. Сила аккомодации глаза – 10 диоптрий.

ПИЩЕВАРЕНИЕ

  • 1. Количество слюны, выделяемой в сутки – 0,5–2,0л.
  • 2. рН слюны — 6,0 — 7,9
  • 2. Количество желудочного сока, выделяемого в сутки – 2,0–2,5л.
  • 3. Количество панкреатического сока, выделяемого в сутки – 1,5–2,0л.
  • 4. Содержание соляной кислоты в желудочном соке – 0,3–0,5 %.
  • 5. рН желудочного сока – 1,5–1,8.
  • 6. рН панкреатического сока – 8,4–8,8.
  • 7. Количество желчи, выделяемой в сутки – 0,5–1,2л.
  • 8. Количество сока тонкой кишки, выделяемого в сутки – 1,0–1,5л.
  • 9. рН сока тонкой кишки – 6,0–7,2.
  • 10. Количество сока толстой кишки, выделяемого в сутки – 0,2–0,3л.
  • 11. рН сока толстой кишки – 6,2–7,3.
  • 12. Средняя суточная норма потребления белков – 100–120г.
  • 13. Средняя суточная норма потребления жиров – 100–110г.
  • 14. Средняя суточная норма потребления углеводов – 400–450г.

ВЫДЕЛЕНИЕ

  • 1. Количество конечной мочи в сутки – 1,0–1,5.
  • 2. Удельный вес мочи – 1010–1025.
  • 3. Количество мочевины – 1,5–2,0 %.
  • 4. Через почки проходит часть крови, вырабатываемой сердцем – 20–25 %.
  • 5. Эффективное фильтрационное давление в почках – 20 мм.рт.ст.
  • 6. Уровень глюкозы в крови, при которой возникает глюкозурия – 1,8г/л. 7. Количество первичной мочи в сутки – 150 -180л.

Salvatore Mangione, M.D.

Непосредственно ниже места полного пережатия артерии (с облитерацией просвета) не слышно никаких звуков. Как только первая капля крови начинает просачиваться из-под участка сдавления, мы слышим очень отчетливо хлопающий звук. Этот звук слышен с момента освобождения пережатой артерии и до появления пульсации на периферических сосудах.

Н.С. Коротков: «О методах исследования кровяного давления». Императорская Академия Мед. Наук. Санкт-Петербург. - 1905. - 4:365.

У человечества есть, по крайней мере, три больших врага: Лихорадка, Голод, и Война. Из них самый страшный - это лихорадка.
Сэр Уильям Ослер, JAMA 26:999, 1896

Четырехдневная лихорадка убивает стариков и исцеляет молодых.
Итальянская пословица

ТРАДИЦИОННЫЕ ВОПРОСЫ И ОТВЕТЫ

Оценка основных физиологических показателей является первоначальной и по-прежнему неотъемлемой частью физикального обследования. К сожалению, она часто передоверяется среднему медицинскому и даже техническому персоналу. Тем не менее, согласно названию, основные физиологические показатели несут в себе обилие важнейшей информации, которая может потребовать специальных навыков и знаний.

Что такое антропометрические показатели?

Вес и рост - оба важных измерения. В отличие от основных физиологических показателей, антропометрические показатели, как правило, более устойчи вы и мало меняются с течением времени. Таким образом, они представляют собой не столь решающую клиническую информацию.

2. Что такое основные физиологические показатели?

Это решающие, следовательно, жизненно важные признаки, которые должны оцениваться при каждом осмотре больного. Это - частота сердечных сокращений, частота дыхания, температура и артериальное давление.

ПУЛЬС

3. Какова нормальная частота сердечных сокращений?

60 - 100 ударов в минуту (уд/мин). Частота ниже 60 уд/мин считается брадикардией, а частота более 100 уд/мин - тахикардией.

4. Каковы характеристики пульса?

Это частота пульса. Затем оценивается ритмичность или неритмичность пульса. Например, ритмичная тахикардия обычно бывает при синусовой тахикардии, предсердно-желудочковой тахикардии re-entry, или желудочковой тахикардии. Напротив, неритмичная тахикардия почти всегда бывает вызвана фибрилляцией предсердий. Трепетание - неритмичная тахикардия, обусловленная изменчивой предсердно-желудочковой блокадой. Ритмичный редкий пульс также может быть у больных с атрио-вентрикулярной блокадой второй степени, у которых выпадение пульсового удара происходит с равными интервалами.

5. Что такое альтернирующий пульс?

Альтернирующий пульс характеризуется нормальной частотой и ритмом с чередованием пульсовых волн малого и большого наполнения. Альтернирующий пульс типичен для застойной сердечной недостаточности и иногда бывает связан с электрической альтернацией (чередование на электрокардиограмме (ЭКГ) высоких и низких комплексов QRS, но ритм сердца при этом остается нормальным).

Рис. 2.1. Альтернация пульса. Обратите внимание, что каждое второе сердечное сокращение создает более низкое систолическое давление. (Адаптировано из: Abrams J: Prim Cardiol, 1982.)

ЧАСТОТА И РИТМ ДЫХАНИЯ

6. Какую информацию можно получить, оценив скорость, ритм и глубину дыхания?

При этом можно получить много полезной информации. При осмысленной оценке этих параметров может потребоваться весь алфавитный набор терминологии, часто влекущий за собой специфический диагноз. Детальное описание этих терминов и самих патологических процессов дано в главе 13.

ТЕМПЕРАТУРА

7. Дайте определение лихорадки.

Лихорадка - это температура тела выше 37°С. Однако в норме у многих людей температура тела достигает более высоких отметок во время физических упражнений или от воздействия внешней среды. Таким образом, истинной лихорадкой следует считать температуру в полости рта выше 37,9° С.

8. Каково различие между температурой во рту и прямой кишке?

Ректальная температура немного выше, чем температура во рту. Различие обычно составляет 0,55°С, но может быть и больше, если человек дышит через рот или в случаях тахипноэ (независимо от того, осуществляется дыхание через рот или через нос). У таких пациентов различие температуры в прямой кишке и во рту в среднем составляет 0,93°С, но может быть даже больше при увеличении частоты дыхания. Прием внутрь холодных или горячих веществ (включая курение сигареты) незадолго до исследования может быть причиной ложно низкой или ложно высокой температуры во рту.

9. Что можно сказать относительно подмышечной температуры?

Она очень неточная, и лучше на нее не полагаться.

10. Сколько времени требуется для правильного измерения температуры в полости рта (под языком)?

Приблизительно 3 минуты для старых ртутных термометров и 1 минута для современных моделей.

11. Каково клиническое значение лихорадки?

Она обычно указывает на наличие инфекции. Лихорадкой, кроме того, также могут сопровождаться воспалительные процессы (например, некоторые аутоимунные заболевания), злокачественные новообразования, медикаментозные реакции, состояния, вызванные воздействием окружающей среды (например, тепловой удар), и некоторые метаболические и эндокринные расстройства (например, болезнь Грейвса, Аддисоновый криз).

12. Что такое искусственная лихорадка?

Это вызванная самим пациентом ложная лихорадка (от латинского слова factitius - искусственно созданный). Методы возбуждения лихорадки бывают самыми разными в зависимости от воображения и ловкости пациентов. Чаще всего непосредственно перед измерением температуры они набирают в рот и задерживают в нем горячую жидкость. Искусственно вызванную лихорадку часто (но не всегда) можно выявить при измерении ректальной температуры или температуры мочи сразу после мочеиспускания. Однако температура мочи немного ниже температуры во рту.

13. Что такое возвратная лихорадка?

Возвратная лихорадка проявляется серией фебрильных атак продолжительностью около 6 дней и разделенных бестемпературными интервалами примерно такой же продолжительности. Возвратная лихорадка обычно вызвана инфекционным процессом (например, бруцеллезом, малярией, боррелиозом или туберкулезом), но также может наблюдаться при болезни Ходжкина или семейной средиземноморской лихорадке.

14. Что такое лихорадка Пеля-Эбштейна?

Лихорадка Пеля-Эбштейна отмечается у 16% пациентов с болезнью Ходжкина. Она характеризуется эпизодами повышения температуры продолжительностью от нескольких часов до нескольких дней с последующими бестемпературными периодами в течение несколько дней и иногда даже недель. Поэтому, лихорадка Пеля-Эбштейна является вариантом рецидивирующей лихорадки. Она была описана в девятнадцатом веке голландцем Питером Пелем и немцем Вильгельмом Эбштей-ном. Интересы Эбштейна выходили далеко за пределы медицины, охватывая изобразительное искусство, литературу и историю. Он даже написал несколько книг о болезнях знаменитых немцев - Лютера и Шопенгауэра , и медицинскую интерпретацию Библии.

15. Что такое ремиттирующая (послабляющая) лихорадка?

Характеризуется длительным повышением температуры тела с суточными колебаниями, превышающими 1°С.

16. Что такое интермиттирующая (перемежающаяся) лихорадка?

Характеризуется высокой лихорадкой на 1-2 дня, сменяющейся нормальной температурой тела.

17. Что такое интермиттирующая лихорадка Шарко?

Особый вид интермиттирующей лихорадки, обычно сопровождающийся ознобом, болью в правом верхнем квадранте живота и желтухой. Является следствием периодической обструкции общего желчного протока камнем.

18. Что такое гектическая (истощающая) лихорадка?

Лихорадка (от греч. hektikos - привычный), характеризующаяся ежедневными пиками повышения температуры в дневное время и часто гиперемией лица. Она обычно наблюдается при активном туберкулезном процессе и является формой интермиттирующей лихорадки с гораздо более резкими колебаниями температуры.

19. Что такое постоянная или устойчивая лихорадка?

Течение ее не сопровождается перерывами или заметным снижением температуры. Постоянная лихорадка наблюдается при сепсисе, вызванном граммотрицательными бактериями, или при поражениях центральной нервной системы.

20. Что такое малярийная лихорадка?

21. Что такое эфемерная лихорадка?

Это повышение температуры не более чем на один или два дня.

22. Что такое нарастающая лихорадка?

Нарастающая лихорадка (от греческого слова epakmastikos - поднимающийся на высоту) характеризуется устойчивым повышением температуры до кульминационной точки, а затем ее кризисным или лизисным снижением (кризис означает резкое снижение температуры, а лизис - более постепенное).

23. Что такое экзантематозная лихорадка?

Лихорадка, вызванная экзантемными высыпаниями.

24. Что такое изнуряющая лихорадка?

Повышение температуры тела после чрезмерного и длительного мышечного напряжения. Может продолжаться до нескольких дней.

25. Что такое милиарная лихорадка?

Инфекционная лихорадка, характеризующаяся профузным потоотделением и потницей (мельчайшие пузырьки на коже, появляющиеся при задержке жидкости в потовых железах). В прошлом обычно наблюдалась во время тяжелых эпидемий.

26. Что такое монолептическая лихорадка?

Постоянная лихорадка, для которой характерен только один пароксизмальный подъем температуры.

27. Что такое полилептическая лихорадка?

Это лихорадка с двумя или более пароксизмами. Обычно наблюдается при малярии (от греческих слов poly - многократный и lepsis - пароксизм).

28. Что такое ундулирующая лихорадка?

Ундулирующая лихорадка отличается длительной волнообразной температурной кривой. Характерна для бруцеллеза.

29. Что такое эссенциальная (идиопатическая) лихорадка?

Это лихорадка неизвестной этиологии. Она проявляется температурой не ниже 38°С в течение 3 недель или более без какой-либо видимой причины. У взрослых лихорадка неизвестного происхождения наиболее часто связана с локализованной инфекцией (абсцесс) или с диссеминированной (малярия, туберкулез, ВИЧ-инфекция, эндокардит, генерализованная грибковая инфекция). Реже причинами эссенциальной лихорадки являются: (1) злокачественные опухоли (особенно лимфомы, гипернефромы, гепатомы и метастазы в печени); 2) аутоиммунные заболевания (коллагенозы); (3) медикаментозные реакции. У пациентов с ятрогенной лихорадкой, вызванной лекарственными препаратами, часто наблюдается температурно-пульсовая диссоциация (см. ниже) и хороший внешний вид, несмотря па высокую температуру. У них также имеются другие признаки аллергической реакции (высыпания на коже и эозинофилия).

30. Что такое температурно-пульсовая диссоциация?

Это повышение температуры, которое не соответствует обычному увеличению частоты сердечных сокращений. В норме при повышении температуры тела на 1°С число сердечных сокращений увеличивается на 10 ударов в мин. Однако частота сердечных сокращений может не увеличиваться. Это встречается при сальмонеллезе, брюшном тифе, бруцеллезе, «болезни легионеров», микоплазменной пневмонии и менингите с повышенным внутричерепным давлением. Диссоциация температуры и пульса может также иметь ятрогенную природу (как при лекарственной лихорадке) или быть просто следствием применения препаратов дигиталиса или бета-блокаторов.

31. Что является причиной крайней гипертермии?

Очень высокая температура (> 40,6°С) обычно вызывается нарушениями функции терморегуляторпых центров нервной системы (центральная лихорадка) Это наблюдается при тепловом ударе, нарушении мозгового кровообращения или обширном гипоксическом повреждении головного мозга в результате остановки сердца (при клинической смерти). Злокачественная гипертермия и злокачественный нейролептический синдром также являются важными причинами резкой гипертермии центрального происхождения (часто превышающей 41,2°С). Такая гипертермия обычно не характерна для инфекционного процесса. Исключением являются инфекции центральной нервной системы (менингит или энцефалит).

32. Каковы причины неадекватно низкой лихорадки?

Повышение температуры ниже ожидаемых значений наблюдается при хронической почечной недостаточности (особенно если лихорадка уремического генеза) и у больных, получающих жаропонижающие (например, ацетаминофен) и нестероидные противовоспалительные препараты. Сердечно-сосудистый коллапс - еще одна важная причина неадекватно низкого повышения температуры тела.

33. Что такое гипотермия? Каковы ее причины?

Гипотермия - это снижение температуры тела ниже 37°С. Однако, учитывая нормальные колебания температуры, истинной гипотермией считается понижение температуры тела ниже 35°С. При умеренной гипотермии температура тела снижается до 23°С-32°С, тогда как при глубокой гипотермии - до 12°С - 20°С. Такие температуры нельзя измерить обычными термометрами. Для этого требуется термистор.

В зависимости от ситуации наиболее частой причиной гипотермии является ареактивный сепсис или переохлаждение. Другими причинами являются нарушения мозгового кровообращения, эндокринные расстройства (гипогликемия, гипотиреоз, пангипопитуитаризм, недостаточность надпочечников) и интоксикации (лекарственные и алкогольные). У пациентов, которые кажутся холодными на ощупь, часто просто спазмированы периферические сосуды.

АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ

34. Как измеряется артериальное давление?

В зависимости от обстоятельств. На практике стандартным методом измерения артериального давления является непрямой метод измерения с помощью пневматической манжетки сфигмоманометра. При этом давление определяется пальпаторно или аускультативно. Однако золотым стандартом остается прямое измерение артериального давления через жесткий катетер, введенный внутри-артериально.

35. Почему важно точно измерять артериальное давление?

Нераспознанная артериальная гипертензия может приводить к сердечно-сосудистым заболеваниям и сокращать продолжительность жизни. Артериальная гипертензия - общая медицинская проблема, касающаяся как минимум 1 из 5 взрослых жителей Северной Америки. Она легко поддается лечению, но часто клинически не проявляется, особенно в начальных стадиях. Таким образом, только регулярные и точные измерения артериального давления позволяют вовремя обнаружить гипертензию и назначить эффективную терапию. Существует и другая причина для точного измерения артериального давления. Случайное завышение артериального давления может стать причиной неправильной диагностики у здорового человека с существенными экономическими, медицинскими и психологическими последствиями. Таким образом, правильные и частые амбулаторные измерения артериального давления являются важными методами на вооружении любого врача.

36. Что такое сфигмоманометр?

В переводе с греческого (sphygmos - пульс, manos - скудный, и metron - измерение) - это прибор для измерения слабого пульса.

37. Кто изобрел сфигмоманометр?

Подобно многим достижениям прошлого, у сфигмоманометра существует много отцов (неудачи - почти всегда сироты). Его гордыми родителями являются француз Пьер Потен, итальянец Сципионе Рива-Роччи, русский Николай Коротков и американец Гарвей Кушинг. Кушинг не участвовал в создании прибора, но распространил его по всей Северной Америке. Кстати, ртутный сфигмоманометр недавно отпраздновал свой 100-летпий юбилей - он был изобретен в 1896 г.

38. Кто и как осуществил первое прямое измерение артериального давления?

Первое прямое измерение артериального давления было осуществлено в Англии в 1733 г. Английский ботаник и химик Стефен Хэйле (1677-1761) решил пожертвовать своей лошадью, чтобы выяснить, действительно ли существует «кровяное давление». На своем заднем дворе он катетеризировал сонную артерию несчастного животного и затем измерил высоту кровяного столба, поднимающегося из сонной артерии по стеклянной трубке. Измерения продолжались от момента катетеризации сонной артерии до смерти лошади. На основании своих наблюдений, Хэйле пришел к выводу, что у животного действительно было что-то, что он назвал «кровяным давлением», и что это давление различается в артериях и венах, во время расслабления и сокращении сердца, а также у больших и маленьких животных. Он опубликовал свои наблюдения под названием «Толчки крови» и затем перешел к более важным и приятным делам: он стал объяснять домохозяйкам, что пирожки нужно прикрывать перевернутыми чайными чашками, чтобы их поверхность не отсыревала.

39. Кто такой Потэн? Какой вклад он внес в измерение артериального давления?

Французский врач Пьер Потэн первым описал ритм галопа и позднее стал прообразом великого парижского диагноста в книге Пруста «В поисках потерянного времени». Потэн был одним из гигантов французской медицины девятнадцатого столетия. К тому же он был очень интересным человеком. Будучи врачом-интерном, он пережил встречу с холерой во время эпидемии 1849 года. Затем он пережил еще более опасные встречи с пруссаками, будучи простым пехотинцем во время войны 1870 года. Потэн стал одним из протеже Труссо (см. ниже), горячим сторонником аускультации сердца и сострадательным педагогом.

Он был известен тем, что на экзаменах отвечал на свои собственные вопросы, если студент не мог дать ответ вовремя. Его уникальным вкладом в измерение артериального давления было приспособление в виде сжимаемого баллона, заполненного воздухом. Баллон (груша) присоединялся резиновой трубкой к анероидному манометру. Затем баллон прижимался к артерии до тех пор, пока не исчезал пульс. Показатели манометра во время исчезновения пульса отражали систолическое артериальное давление пациента.

40. Кто первым придумал ртутный сфигмоманометр?

Сципионе Рива-Роччи был одним из студентов Потэна. Сначала Рива-Роччи учился и работал иод руководством Форланини над идеей лечебного пневмоторакса при туберкулезе легких. Изучая процесс заполнения воздухом плевральной полости под заданным давлением, он заинтересовался неинвазивным измерением артериального давления. В 1896 году, в возрасте 33 лет, Рива-Роччи пришел к идее создания ртутного сфигмоманометра - устройства, близкого к манометру, в котором изменения давления определяются по разнице высоты ртутного столба вместо вращающейся стрелки анероидного (или дискового) манометра Потена. Эта идея была весьма полезна для медицины, но, возможно, оказалась фатальной для Рива-Роччи. Несколько лет спустя он умер от хронического неврологического заболевания, возможно, полученного в лаборатории. Рива-Роччи внес несколько усовершенствований в прибор Потэна:

  1. Он предложил использовать плечевую артерию вместо лучевой (что сделало измерения артериального давления более легкими и точными).
  2. Он также предложил обертывать руку надувной каучуковой манжетой; при этом вероятность завышения артериального давления сократилась. (Позднее Реклингаузен увеличил ширину манжетки с 5 до 13 см).
  3. Во избежание ошибок было предложено руководство по использованию сфигмоманометра.
  4. Прибор стал настолько простым и легким в применении, что появилась возможность измерять артериальное давление прямо у постели больного. Действительно, совершенство его прибора подтверждается тем фактом, что спустя 100 лет он претерпел лишь незначительные изменения. Рива-Роччи также хорошо понимал эффект «белого халата» при измерении артериального давления и первым описал его.

41. Как прибор Рива-Роччи попал в Соединенные Штаты?

Несмотря на свои заслуги, сфигмоманометр Рива-Роччи мог бы остаться итальянским секретом, если бы не визит Гарвея Кушинга в Павию в 1901 г. Кушинг провел несколько дней с Рива-Роччи в «Оспедаль ди Сан Маттео», сделал рисунок прибора, получил один в подарок и привез все назад к Джонсу Хопкинсу. Остальное - история.

42. Кто усовершенствовал методику непрямого измерения артериального давления?

Проблема сфигмомапометров Потэна и Рива-Роччи состояла в том, что они позволяли измерить только систолическое давление (освобождая пульсовую волну после пережатия артерии). На помощь пришел русский врач Николай Сергеевич Коротков. Коротков случайно наткнулся на свое открытие аускультативных тонов артериального давления, как это часто случается в крупных открытиях медицины. Будучи хирургом в царской армии, он только что завершил свою службу во время русско-японской войны 1904 г. и в возрасте 30 лет приехал в Санкт-Петербург, где приступил к изучению на животных постхирургических артерио-венозных свищей. Однажды Коротков выслушивал артерию собаки во время ослабления жгута. Внезапно он услышал громкие звуки. Заинтригованный, он заметил, что звуки соответствовали систоле и диастоле сердца, и опубликовал результаты своих наблюдений в 1905 г. Коротков предположил, что моменты появления и исчезновения пульсовых ударов совпадают с достижением максимального и минимального артериального давления. Статья, написанная по-русски, не вызвала особого отклика в Европе, но наделала много шума в России, создавая Короткову завидную репутацию сумасшедшего. Только после того как статья, наконец, достигла Германии (а оттуда Англии) аускультативный метод Короткова заменил пульсовый метод Рива-Роччи и Потэна. Современный метод измерения систолического и диастолического артериального давления был, наконец, рожден. Коротков был арестован во время русской революции и умер в 1920 году.

43. Как правильно измерять артериальное давление методом Короткова?

Американская кардиологическая ассоциация выпустила рекомендации по непрямому аускультативному измерению артериального давления.

Техника измерения артериального давления _

Необходимо объяснить пациенту ваши цели и намерения и рассеять все его сомнения. Кроме того, нужно приложить все усилия, чтобы пациент чувствовал себя непринужденно, включая 5-минутный отдых перед первым измерением артериального давления. Последовательные шаги для измерения артериального давления на верхней конечности, как при рутинном исследовании, так и с целью мониторинга должны быть следующими:

  1. Приготовьте бумагу и ручку для немедленной регистрации артериального давления.
  2. Создайте пациенту тихую спокойную обстановку (ноги свободно стоят на иолу, спина опирается на спинку стула). Оголенная рука пациента должна спокойно лежать на обычном столе или другой подставке так, чтобы середина плеча находилась на уровне сердца.
  3. Оцените на глаз или измерьте сантиметровой лентой окружность оголенного плеча посередине между акромионом (латеральный конец ости лопатки) и олекранопом (локтевым отростком) и выберите манжету соответствующего размера. Надувная камера внутри манжеты должна окружать 80% руки взрослых и 100% руки детей моложе 13 лет. Если есть сомнения, используйте манжету большего размера. Если вы располагаете только слишком маленькой манжетой, это должно быть отмечено.
  4. Пропальпируйте плечевую артерию и расположите манжету так, чтобы середина надувной камеры находилась над областью пропальпировапного артериального пульса; затем плотно оберните и закрепите манжету вокруг оголенной руки пациента. Не закатывайте рукав так, чтобы он образовал жесткий жгут вокруг плеча. Неплотное прилегание манжеты приводит к завышению артериального давления. Нижний край манжеты должен быть на 2 см выше передней локтевой ямки, в которую помещается головка фонендоскопа.
  5. Разместите манометр так, чтобы центр ртутного столбика или анероидного диска находился на уровне ваших глаз (кроме моделей с наклонными трубками) и был хорошо виден, а трубка манжеты не перегибалась.
  6. Быстро накачайте манжету до 70 мм рт. ст. и постепенно увеличивайте давление по 10 мм рт.ст., одновременно пальпируя пульс на лучевой артерии. Заметьте величину давления, при котором пульс исчезает и впоследствии при сдувании манжеты появляется вновь. Этот пальпаторпый метод дает необходимое предварительное представление о систолическом давлении и обеспечивает раздувание манжетки до адекватного уровня во время аускультативного измерения артериального давления. Пальпаторный метод позволяет избежать недостаточного надувания манжеты у пациентов с аускультативным провалом (зоной молчания) и ее чрезмерного раздувания при очень низком артериальном давлении.
  7. Поместите наушники фонендоскопа в наружные слуховые проходы, согнув их вперед для плотного прилегания. Переключите головку стетофонепдоскопа на низкочастотную позицию стетоскопа. Для подтверждения переключения слегка постучите но воронке стетоскопа.
  8. Разместите стетоскоп над местом пульсации плечевой артерии чуть выше и медиальнее передней локтевой ямки, но ниже края манжеты и удерживайте его в этой точке (но не слишком надавливайте). Убедитесь, что воронка стетоскопа плотно контактирует с кожей по всей окружности. Подсовывание воронки стетоскопа под край манжеты позволяет освободить одну руку, но в результате может выслушиваться значительный посторонний шум (в любом случае, это почти невозможно осуществить при выслушивании стетоскопом).
  9. Быстро и равномерно накачайте воздух в манжету до давления, которое па 20 - 30 мм рт. ст. превышает давление, предварительно определенное пальпаторно. Затем частично откройте клапан и, выпуская воздух из манжеты, снижайте давление в ней со скоростью 2 мм рт.ст./с, одновременно прислушиваясь к появлению тонов Короткова.
  10. Во время снижения давления в манжете отметьте показания манометра при первом появлении повторяющихся пульсовых тонов (Фаза I), при стихании этих тонов (Фаза IV) и при их исчезновении (Фаза V). В период, когда слышны тоны Короткова, скорость сдувания манжеты не должна превышать 2 мм рт. ст. на каждый пульсовой удар, тем самым, компенсируя как быстрый, так и медленный сердечный ритм.
  11. После того как звуки Короткова перестают выслушиваться, давление в манжете необходимо снижать медленно (по крайней мере, на следующие 10 мм рт.ст.), чтобы убедиться, что больше никаких звуков не слышно. Только после этого манжету можно быстро и полностью сдуть. Пациенту нужно дать отдохнуть не менее 30 секунд.
  12. Показателя систолического (Фаза I) и диастолического (Фаза V) давления должны быть сразу зарегистрированы, округлены (в большую сторону) на 2 мм рт.ст. У детей и в тех случаях, когда тоны слышны почти на уровне 0 мм рт. ст, регистрируется также Фаза IV артериального давления (например: 108/65/56 мм рт.ст.). Все значения должны регистрироваться с указанием фамилии пациента, даты, времени измерения, на какой руке производилось измерение, положения пациента и размера манжеты (если она была нестандартного размера).
  13. Измерение нужно повторить не ранее чем через 30 секунд, и эти две величины должны быть усреднены. В некоторых клинических случаях можно выполнить дополнительные измерения на той же или противоположной руке, в том же или другом положении.

Гарантировано авторским правом Американской кардиологической ассоциации (1993). (Адаптировано из: Reeves RA: Does this patient have hyprtension? How to measuure blood pressure. JAMA. — 1995. — 273. — C. 1211-1217).

44. Когда нужно измерять артериальное давление?

Оно должно измеряться при каждом осмотре пациента, как в поликлинике, так и в стационаре. При каждом исследовании вы должны сделать два или больше измерений на одной и той же руке в положении лежа или сидя. Средние значения должны быть отражены в медицинской карте. Если показатели диастолического давления отличаются больше чем на 5 мм рт. ст., нужно провести дополнительные измерения, пока не будут получены стабильные показатели. При первой встрече с больным измеряйте артериальное давление на обеих руках, а в последующем - на руке с более высоким артериальным давлением (считается, что в руке с более низким давлением имеются патологические изменения).

45. Где должно измеряться артериальное давление?

Как минимум, оно должно измеряться на обеих руках. Различие систолического давления между двумя руками более чем на 10-15 мм рт. ст. считается существенным. Это измерение требует двух независимых исследователей, проводящих измерение одновременно на двух руках и затем меняющихся сторонами. Вы также должны измерить артериальное давление на ногах, если на то имеются клинические показания (см. ниже).

46. Как диагностируется артериальная гипертензия?

С большим трудом. Фактически нет истинных пороговых показателей артериального давления, ниже которых риск сердечно-сосудистых заболеваний является минимальным и выше которых болезнь, как правило, развивается. Даже незначительная гипертензия не должна остаться без пристального внимания, а систолическую гипертензию нельзя игнорировать.

* Основана на средних показателях двух или более измерений, сделанных за время двух или более визитов после первого исследования.

Адаптировано из Пятого доклада Объединенного национального комитета по обнаружению, оценке и лечению высокого артериальное давления. (Reeves RA.: Does this patient have hyprtension? How to measuure blood pressure. JAMA. - 1995. -213. - C.1211-1217)

По общему мнению, артериальной гипертензией считается такой уровень артериального давления, выше которого риск развития сердечно-сосудистых болезней значительно возрастает. Порог гипертензии находится около (или выше) 140/90 мм рт.ст. Требующая лечения гипертензия - это такой уровень артериального давления, выше которого польза от лечения превышает возможные негативные последствия. Этот порог установлен для стойких значений артериального давления (На самом деле даже «мягкая» артериальная гипертензия (систолическое артериальное давление = 140- 159/> 90-99 мм рт. ст.) требует наблюдения и лечения. - Прим. ред.) :

  • систолическое давление ≥ 160 мм рт.ст. (только в пожилом возрасте) при повышении диастолического давления или без него или
  • диастолическое давление ≥ 90 мм рт. ст. (у молодых и пожилых пациентов).

Артериальное давление очень изменчиво и часто уменьшается по ходу наблюдения. Таким образом, важно наблюдать за пациентом в течение некоторого времени, прежде чем поставить диагноз артериальной гипертензии (см. ниже).

47. Какие факторы приводят к завышению или занижению истинного артериального давления?

Во время обычного амбулаторного осмотра некоторые факторы могут способствовать как увеличению, так и снижению артериального давления. Важно их хорошо знать.

Факторы, влияющие на точность измерения артериального давления в кабинете врача

ФАКТОР ВЕЛИЧИНА (САД/ДАД, ММ РТ.СТ.)
Повышает артериальное давление
Пациент
слабые тоны Короткова ДАД
ДАД (редко, очень высокое)
псевдогипертензия от 2 до 98/3 до 49
реакция на «белый халат»
на врача от 11 до 28/3 до 15
на постороннего от 1 до 12/2 до 7
парез руки (при инсульте) 2/5
боль, беспокойство может быть большим
сразу после курения 6/5
после приема кофеина 11/5
после приема алкоголя 8/8
переполненный мочевой пузырь 15/10
разговор, ведение записи 7/8
Обстановка, оборудование
окружающий шум ДАД
негерметичный клапан надувной камеры > 2 ДАД
блокированное выходное отверстие манометра от 2 до 10
холодные руки или фонендоскоп не установлено
Исследователь
предубеждение вероятно < 10
ослабленный слух ДАД
Исследование
манжета слишком узкая от — 8 до +10/2 до 8
манжета наложена не по центру плеча 4/3
манжета наложена поверх одежды от 5 до 50
локоть расположен слишком низко 6
манжета наложена слишком свободно не установлено
слишком короткий период отдыха различные значения
спина не опирается на спинку стула от 6 до 10
рука висит от 1 до 7/5 до 11
слишком медленное сдувание манжеты от -1 до +2/5 до 6
только ДАД
ошибка, связанная с изменением позиции исследователя от 2 до 4
определение артериального давления по фазе IV (у взрослых) 6 ДАД
слишком короткий промежуток перед повторным измерением давления 1/1
холодное время года (по сравнению с теплым) от 6/3 до 10
Понижает артериальное давление
Пациент слабые тоны Короткова САД
недавний прием пищи от -1 до 1 /1 до 4
пропущенный аускультативный провал от 10 до 50 САД
высокий ударный объем Фаза V может = 0
привыкание от 0 до 7/2 до 12
шок (дополнительная псевдогипотензия) 33 САД
Обстановка, оборудование
окружающий шум САД
неисправный пружинный манометр может быть >10
низкий уровень ртути значения варьируют
негерметичность надувной камеры ≥ 2 САД
Исследователь
считывание значений на 5 или 10 мм рт.ст. ниже истинных
или предвзятое ожидание вероятно <10
сниженный слух только САД
Исследование
измерение давления на левой руке по сравнению с правой 1/1
слишком долгий отдых (25 мин) 10/0
локоть расположен слишком высоко 5/5
слишком быстрое сдувание манжеты только САД
чрезмерное давление на воронку стетоскопа ≥9 ДАД
ошибка, связанная с перемещением исследователя (для анероидного манометра) от 2 до 4

САД = систолическое артериальное давление, ДАД = диастолическое артериальное давление. (Адаптировано из: Reeves RA.: Does this patient have hyprtension? How to measuure blood pressure. JAMA. 273:1211 - 1217, 1995).

He оказывают влияния на измерение артериального давления следующие факторы: менструация, хроническое употребление кофеина, закапывание в нос мезатона (фенилэфрина), автоматическое накачивание манжеты, пол или раса пациента и исследователя, наличие тонкого рукава рубашки под манжетой, раструб стетоскопа или диафрагма, накачивание манжеты самим пациентом, время дня и температура в комнате.

48. Каковы наиболее распространенные причины вариабельности артериального давления?

Обычно они связаны с пациентом, оборудованием, или исследователем. Со временем артериальное давление пациентов сильно меняется. Если измерять артериальное давление два или более раз при каждом визите пациента, стандартное отклонение значений артериального давления между посещениями составляет 5 - 12 мм рт.ст. для систолического и 6 - 8 мм рт.ст. для диастолического. Эти колебания давления между визитами значительно превышают колебания давления в пределах одного визита. Таким образом, чем чаще вы встречаетесь с больным, тем больше уверенности в точности диагноза. Однако при оценке величины артериального давления и клинического статуса необходимо учитывать интервал между визитами пациента. Объединенный национальный комитет рекомендует повторять измерения 1 раз в месяц при первоначальных значениях систолического давления 160 - 179 мм рт.ст. или диастолического давления 100-109 мм рт.ст. (стадия 2); раз в 2 месяца при стадии 1, раз в неделю при стадии 3, и немедленная оценка при стадии 4. Кроме того, аритмии (особенно фибрилляция предсердий) также могут вызывать изменения сердечного выброса от удара к удару и таким образом увеличивать вариабельность результатов измерений артериального давления у разных исследователей. Среднеарифметические значения нескольких измерений позволяют преодолеть эту проблему.

Наконец, хотя совпадение результатов у разных исследователей достаточно высокое, врачи могут быть ответственны за ошибки. Фактически, различия среди исследователей в 10/8 мм рт.ст. весьма обычны. Для интереса: у автоматических аускультативных мониторов количество несовпадений немного меньше, чем в контрольной группе опытных клиницистов.

Большинство врачей проверяют ваши показатели жизненно важных функций на каждом приёме, потому что они являются тем, что подразумевается названием - жизненно важными признаками. Четыре показателя таких функций это: частота сердцебиения, артериальное давление, частота дыхания и температура. Вам следует включить в вашу программу профилактики регулярные измерения артериального давления и температуры, что вы с лёгкостью можете делать или дома или с вашим консультантом по здоровому образу жизни.

Частота сердцебиения

Удивительно, сколько людей не знают, как измерять свою частоту ударов сердца или пульс, но мы считаем важным, чтобы все умели применять этот элементарный навык. Научиться измерять пульс очень просто, и это может дать вам массу информации о состоянии сердца. Практикующие китайскую медицину измеряют 12 разных видов пульса в области запястий, но вам, к счастью, нужно научиться измерять всего лишь один и простой.

Проще всего измерить пульс на запястье. Просто поместите указательный и средний пальцы другой руки на внутреннюю поверхность запястья рядом с большим пальцем. Считайте биения в течение 20 секунд, умножьте на 3 и вот вам ваша частота сердцебиения. Возможно вы захотите попробовать это прямо сейчас. Может быть, вам понадобится поискать на ощупь, чтобы найти пульс, если вы этого раньше не делали, но с небольшой практикой большинство людей могут найти свой пульс на запястье. Наиболее распространённая ошибка - это сильно давить, так что прикасайтесь легко. Также в аптеках или спортивных магазинах можно купить недорогие пульсомеры, которые просты в использовании.

У Армстронга, к примеру, частота сердцебиения в состоянии покоя всего лишь 32 удара в минуту. У мужчин частота сердцебиения в состоянии покоя обычно меньше, чем у женщин, но вообще, вам нужно, чтобы у вас она была меньше 84 ударов в минуту. Оптимальная частота сердцебиения менее 70 ударов в минуту. Если ваша частота сердцебиения в состоянии покоя больше 100, то или вы в очень плохой форме, или у вас скрытая медицинская проблема, например сердечное заболевание, проблема с щитовидной железой или анемия, и вам следует посетить врача.

Артериальное давление (АД)

АД легко измерить в домашних условиях с помощью широкодоступных автоматизированных устройств. Есть четыре категории артериального давления:

< 120/80 мм. рт. ст. - оптимальное; от 120/80 до 130/85 мм. рт. ст. - нормальное; от 130/85 до 140/90 мм. рт. ст. - повышенное нормальное; >140/90 мм. рт. ст. - высокое.

Примерно у 40% американцев показатели давления укладываются в оптимальные, у 24% - в нормальные, у 13% в повышенные нормальные и у 23% - в высокие. Большинство врачей рекомендуют применение лекарственных препаратов, когда давление систематически выше 140/90, однако существуют риски для здоровья в любое время, когда АД выше оптимального диапазона 120/80. Согласно исследованию Национального Института Сердца, Лёгких и Крови, опубликованному в 2008-м году, шанс сердечного приступа или инсульта значительно повышается, чем выше АД. Приведённая ниже таблица иллюстрирует риск сердечно-сосудистых происшествий, таких как сердечный приступ или инсульт, за 10-летний период лет для мужчин и женщин в возрасте от 35 до 64 лет:

Таблица 10-1: Риск сердечно-сосудистых происшествий за период в 10 лет

Эта таблица показывает что даже повышенное нормальное давление, при котором не требуется медицинского лечения, повышает риск инфарктов на 230% у женщин и на 70% у мужчин в сравнении с оптимальными параметрами. Потеря веса, регулярные физические упражнения и сниженное потребление продуктов с высоким гликемическим показателем - вот простые и эффективные способы, которыми можно сдвинуть нормальное и повышенное нормальное артериальное давление ближе к оптимальному диапазону.

Для тех, чье АД остаётся повышенно нормальным или даже в нижней части диапазона высокого АД, несмотря на внедрение в жизнь программы TRANSCEND, мы рекомендуем травяной состав традиционной китайской медицины от фирмы "Seven Forests", известный как Ункария-6, также известный как Gou Teng Jiang Ya Pian. Похоже, что эта недорогая травяная смесь действует безопасно и эффективно во многих случаях, и у неё мало побочных эффектов. Она широко доступна у иглотерапевтов, которые также практикуют китайскую травяную медицину.

Состав тканей тела

Кроме жизненно важных показателей важно знать состав тканей тела. Это количественный показатель того, сколько в вашем организме жировой ткани и сколько нежировой, в которую входит всё остальное, например мышцы, кости и кровь. Можно получить дополнительную информацию о составе тканей вашего организма, измерив соотношение окружностей талии и бёдер, которое укажет, в каких частях тела распределён жир. Эти два измерения настолько же, если даже не больше, важны, как и ваш вес на весах. Большинство терапевтов редко измеряют состав тканей тела и соотношение талии и бёдер, так что вам, возможно, придётся сделать это самим.

Жир тела

Жир в организме можно разделить на два основных вида: необходимый жир, который нужен для выживания и репродуктивной функции и накопленный жир, который служит запасом калорий. Это ещё один пример того, что наша генетическая "программа" устарела. Древний ген, ген рецептора инсулина, вообще говорит держаться за каждую калорию. Это имело смысл тысячи лет назад, но не сейчас. Мужчинам нужно минимум от 2 до 5 процентов необходимого жира, а женщинам от 10 до 12 процентов. Во многих отношениях жир ведёт себя как любой другой орган тела и играет жизненно важную роль. Необходимый жир нужен для создания мягкого упругого слоя для таких органов, как сердце, селезёнка и кишки. Почти половину веса мозга без учета воды составляет жир, а у женщин жир участвует в регуляции половых гормонов, таких как тестостерон и эстроген. У обоих полов жировая ткань выделяет важные гормоны, например лептин, резистин, адипонектин, интерлейкин-6 и фактор некроза опухолей альфа, которые помогают регулировать многочисленные метаболические процессы.

В качестве общего правила, мужчинам следует поддерживать общий уровень жира организма от 10 до 17 процентов, а женщинам от 18 до 26 процентов. Оптимальное процентное содержание находится в нижнем краю этих диапазонов, так что мужчины могут нацелиться на оптимальный уровень жира в организме от 10 до 12 процентов, а женщинам - от 18 до 20 процентов, хотя у натренированных спортсменов скорее всего уровень жира будет меньше этих значений. Если вы весите 164 фунта (средний вес американской женщины в 2002-м году) и ваш уровень жира в организме 34 процента, значит вы носите 52 фунта жира. Чтобы достигнуть более здоровой цифры 24 процента жира в организме, вам нужно сбросить 22 фунта (тогда вы бы весили 142 фунта , что близко к среднему весу американских женщин в 1960-е годы).

Наиболее точный метод измерения уровня жира в организме это подводное (гидростатическое) взвешивание, но вы можете получить близкий результат с помощью портативных приборов или весов, которые показывают как вес, так и процент жира в организме. Некоторые из этих устройств печально известны своей неточностью, так что правильно будет измерить процент жира в организме в кабинете врача или тренажёрном зале на более точном приборе, таком как измеритель импеданса или подводный резервуар, и затем сравнить это измерение с данными домашнего прибора, чтобы убедиться, что вы получаете точные данные.

Материал из Википедии - свободной энциклопедии

Показатели жизненно важных функций - характеристики, по которым можно судить о состоянии жизненно важных систем и (или) функций организма.

В медицине

К главным показателям жизненно важных функций относятся:

  • Частота пульса

Для установления этих показателей необходимы: термометр , сфигмоманометр и часы . Наличие дыхания в случае его сильного ослабления можно установить по образованию конденсата на поднесённом ко рту пациента зеркальце . Слабый, непрощупываемый руками пульс можно установить при помощи стетоскопа .

Дополнительными способами установить признаки жизни являются:

Некоторыми специалистами отмечается что боль - субъективный синдром , а не объективный признак, и поэтому не может являться предметом классификации.
  • Пульсовая оксиметрия
Оптический метод измерения насыщения крови кислородом. Измерение жизненной ёмкости лёгких.

В космосе

Напишите отзыв о статье "Показатели жизненно важных функций"

Примечания

Отрывок, характеризующий Показатели жизненно важных функций

Фехтовальщик, требовавший борьбы по правилам искусства, были французы; его противник, бросивший шпагу и поднявший дубину, были русские; люди, старающиеся объяснить все по правилам фехтования, – историки, которые писали об этом событии.
Со времени пожара Смоленска началась война, не подходящая ни под какие прежние предания войн. Сожжение городов и деревень, отступление после сражений, удар Бородина и опять отступление, оставление и пожар Москвы, ловля мародеров, переимка транспортов, партизанская война – все это были отступления от правил.
Наполеон чувствовал это, и с самого того времени, когда он в правильной позе фехтовальщика остановился в Москве и вместо шпаги противника увидал поднятую над собой дубину, он не переставал жаловаться Кутузову и императору Александру на то, что война велась противно всем правилам (как будто существовали какие то правила для того, чтобы убивать людей). Несмотря на жалобы французов о неисполнении правил, несмотря на то, что русским, высшим по положению людям казалось почему то стыдным драться дубиной, а хотелось по всем правилам стать в позицию en quarte или en tierce [четвертую, третью], сделать искусное выпадение в prime [первую] и т. д., – дубина народной войны поднялась со всей своей грозной и величественной силой и, не спрашивая ничьих вкусов и правил, с глупой простотой, но с целесообразностью, не разбирая ничего, поднималась, опускалась и гвоздила французов до тех пор, пока не погибло все нашествие.
И благо тому народу, который не как французы в 1813 году, отсалютовав по всем правилам искусства и перевернув шпагу эфесом, грациозно и учтиво передает ее великодушному победителю, а благо тому народу, который в минуту испытания, не спрашивая о том, как по правилам поступали другие в подобных случаях, с простотою и легкостью поднимает первую попавшуюся дубину и гвоздит ею до тех пор, пока в душе его чувство оскорбления и мести не заменяется презрением и жалостью.

Одним из самых осязательных и выгодных отступлений от так называемых правил войны есть действие разрозненных людей против людей, жмущихся в кучу. Такого рода действия всегда проявляются в войне, принимающей народный характер. Действия эти состоят в том, что, вместо того чтобы становиться толпой против толпы, люди расходятся врозь, нападают поодиночке и тотчас же бегут, когда на них нападают большими силами, а потом опять нападают, когда представляется случай. Это делали гверильясы в Испании; это делали горцы на Кавказе; это делали русские в 1812 м году.
Войну такого рода назвали партизанскою и полагали, что, назвав ее так, объяснили ее значение. Между тем такого рода война не только не подходит ни под какие правила, но прямо противоположна известному и признанному за непогрешимое тактическому правилу. Правило это говорит, что атакующий должен сосредоточивать свои войска с тем, чтобы в момент боя быть сильнее противника.
Партизанская война (всегда успешная, как показывает история) прямо противуположна этому правилу.
Противоречие это происходит оттого, что военная наука принимает силу войск тождественною с их числительностию. Военная наука говорит, что чем больше войска, тем больше силы. Les gros bataillons ont toujours raison. [Право всегда на стороне больших армий.]
Говоря это, военная наука подобна той механике, которая, основываясь на рассмотрении сил только по отношению к их массам, сказала бы, что силы равны или не равны между собою, потому что равны или не равны их массы.
Сила (количество движения) есть произведение из массы на скорость.
В военном деле сила войска есть также произведение из массы на что то такое, на какое то неизвестное х.